
1

Password-manager friendly (PMF):
Semantic annotations to improve the
e�ectiveness of password managers

Frank Stajano, Max Spencer, Graeme Jenkinson
{max.spencer, frank.stajano, graeme.jenkinson}@cl.cam.ac.uk

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom

Abstract. Subtle and sometimes ba�ing variations in the implementa-
tion of password-based authentication are widespread on the web. De-
spite being imperceptible to end users, such variations often require that
password managers implement complex heuristics in order to act on the
user’s behalf. These heuristics are inherently brittle. As a result, pass-
word managers are unnecessarily complex and yet they still occasionally
fail to work properly on some websites. In this paper we propose PMF,
a simple set of semantic labels for password-related web forms. These
semantic labels allow a software agent such as a password manager to
extract meaning, such as which site the login form is for and what field
in the form corresponds to the username. They also allow it to generate a
strong password on the user’s behalf. PMF reduces a password manager’s
dependency on complex heuristics, making its operation more e�ective
and dependable and bringing usability and security advantages to users
and website operators.

1 Introduction

We don’t have to explain to this audience that, on the web, we are asked to
remember way too many passwords. One reasonable way of coping with this
burden is with a password manager—a piece of software that remembers pass-
words on the user’s behalf and submits them automatically when required. All
modern browsers such as Chrome, Firefox and Internet Explorer provide an inte-
grated password manager. Because websites frequently have slight di�erences in
the way they handle asking the user to type a password (or to define a new one),
every password manager must implement complex heuristics in order to parse,
auto-fill and submit the password-requesting web pages. Such code is inherently
fragile and requires continuous maintenance as login web pages evolve and be-
come fancier. As a result, some websites don’t work seamlessly with password
managers.

Password managers would be simpler and more dependable if websites adopted
a set of semantic labels for HTML forms that allowed unambiguous registration
and submission of passwords by programs acting on the user’s behalf. In this

Pre-proceedings version. Do not circulate.
Final version to appear in Proceedings of Passwords 2014, Springer LNCS.



2 Frank Stajano, Max Spencer, Graeme Jenkinson

paper we o�er two main contributions. First, we document the many ways in
which websites ask for passwords and the many subtle ways in which the heuris-
tics commonly employed by password managers can break, demonstrating how
such code requires extensive maintenance to be reliable. Second, and most im-
portant, we propose PMF, a practical set of semantic labels that websites may
immediately adopt. We also very briefly discuss incentives and benefits for the
various parties involved.

2 Inconsistencies in password-based login on the web

Ignoring issues of style and presentation, password-based authentication on the
web presents a fairly consistent interface to the user. To log in, users first find the
login form, enter their username and password for that site into the appropriate
boxes, and then press return or click the submit button. And, to a first approx-
imation, the behaviour of the browser and the website is consistent across sites
as well: the username and password entered into the form are sent to the server
in an HTTPS POST request and a session cookie is returned. However, when we
look in more detail, we notice a huge range of variations, some subtle and some
ba�ing. Whilst these variations are imperceptible to the user, they present dif-
ficulties for a software agent parsing or automatically submitting the login form.
This is because sub-tasks like entering the right username and password “into
the appropriate boxes” are non-trivial and must rely on heuristics.

What are, then, the variations commonly exhibited by popular websites? A
significant one is the modification of the static HTML login form by JavaScript.
Some sites, such as Pinterest [1], use JavaScript to dynamically insert the login
form into the page. Besides being annoying for users who browse with JavaScript
disabled for security reasons, this practice also complicates the task of a password
manager. Instead of parsing the HTML document just once at load-time to find
any login forms, it must also monitor all changes made to the Document Object
Model (DOM) by JavaScript thereafter.

The sins of JavaScript don’t end there, though. Many sites use JavaScript to
actually submit the form, thereby confusing utilities such as password managers
that commonly intercept submission of the form to save the credentials. Forgoing
a simple “submit” input adds little benefit and obfuscates the login process. Fur-
thermore, to mitigate Cross-Site Request Forgery (CSRF) attacks [2], JavaScript
is sometimes used to automatically insert values (nonces/challenges associated
with the session) into hidden fields within the login form. For example, the follow-
ing is added to the form on the Vimeo login page (https://vimeo.com/log_in)
using JavaScript:

<input type=" hidden " name=" token " value=" 8113... " />

Attempts to log in to Vimeo with JavaScript disabled fail. Programs that parse
or submit a login form must be compatible with such approaches, without being
explicitly aware of what they achieve or even that they are being used.

https://vimeo.com/log_in


Password-manager friendly (PMF) 3

Another problem facing a software agent such as a password manager is
extracting the meaning (semantics) from the HTML login form. In the first in-
stance, we’d like to determine what site the login form is for. The continued
prevalence of phishing attacks demonstrates that reliably determining the web-
site of a login page is too di�cult for many humans. Software agents should
have an advantage here. Indexing the username and password by the site’s URL
ensures that, provided HTTPS is used, the username and password are only
submitted to correct site. Unfortunately, things are rarely this simple. Some
websites have login forms on multiple pages—for example Facebook has one on
its main landing page (www.facebook.com) and one on a dedicated login page
(www.facebook.com/login.php). Should these login forms be considered as be-
ing for the same service? In the case of Facebook, both URLs are in the same
second level domain facebook.com, so the answer is probably yes. But what
about in a corporate intranet, where diverse services such as for submitting ex-
penses and time sheets are all likely to be under the same second level domain?

It might be argued that services should only be considered the same if they
have exactly the same URL. But what about the query string? Does that have
to match as well? What about the order of the query parameters? What about
dynamic URLs that provide alternative but equivalent encodings of the URL’s
query component? Any heuristic trying to shed light on this morass is likely to
get things wrong (at least some of the time). Should users really have to accept
that the computer doesn’t even know what service is being logged in to?

Whilst it’s obvious to a human whether a login to Facebook or Gmail suc-
ceeded, it’s actually pretty hard for a software agent to know what happened.
Whether or not the submitted username and password were correct, a HTTP
200 OK response is returned, indicating that a page was successfully served in
response to the request (possibly after a sequence of redirects—in the case of
Gmail rather a lot of redirects). Password managers can not reliably di�erentiate
between these outcomes and, as a result, they often ask users to save passwords
that are mistyped or just plain wrong. This seems needlessly annoying.

3 Incentives

Our proposal o�ers obvious advantages to users in terms of usability (you don’t
have to remember or type the passwords any more) and security1 (you can use
strong, distinct passwords). The advantages for password manager writers are
even clearer (without guesswork, code becomes simpler, more reliable and much
easier to maintain). Let’s thus spend a few words on the incentives for website
operators.

We believe it is in the best interests of website operators to support password
managers: the website users will gain in usability and security. If users, thanks to
1 Users of password managers are still exposed to malware; we are not claiming that

the security o�ered by password managers is absolute (see section 5). Besides, our
proposal implicitly also supports higher-security password managers running on ded-
icated hardware.

www.facebook.com
www.facebook.com/login.php


4 Frank Stajano, Max Spencer, Graeme Jenkinson

password managers, adopted strong unique random passwords, website operators
would have much less to worry about confidentiality compromises of their hashed
password file.

We understand that website operators don’t want to allow bots to register
thousands of accounts and we support this goal. Any techniques the websites
may wish to use to ensure the presence of a human registrant (from CAPTCHAs
to telephone callbacks and so forth) will continue to be available. We are only
concerned with helping the human registrant store the password in a password
manager instead of having to remember it in their brain. Only websites with
delusions of grandeur may still believe that, regardless of all other demands on
the user’s memory and patience, their password is so important that it must be
uncrackably strong and di�erent from any others and never written down. They
should study the Compliance Budget model [3], manage risks more maturely
and cure their superiority complex.

4 The PMF semantic markup

4.1 Overview

We propose adding “password-manager friendly” (PMF) semantic markup to
forms related to creating, accessing and managing user accounts, to simplify the
following tasks:

– Finding forms and determining their purpose (login, registration, etc.).
– Finding the important inputs within the forms.
– Parsing password policies and generating valid new passwords.
– Detecting errors.

We adopt a simple and pragmatic approach used in other HTML microfor-
mats, of using semantic class names. A class attribute value can be specified for
any HTML element [4] and the use of semantic class names is supported by the
W3C [5]. We use the pmf prefix as a poor man’s namespace to avoid clashes with
programmer-defined class names. For example2, a login form is marked with the
pmf-login class:

<form action ="/login " method ="POST" class="pmf-login">

Although form inputs have other attributes such as name and type which may
often give su�cient semantic information, standardised class values can be used
to remove any ambiguity. For example, not all inputs with type="password"
are for long-term passwords: some are for one-time codes generated by hardware
tokens. Furthermore, as name attribute values are sometimes automatically gen-
erated by web frameworks or are specified by other standards such as OAuth
[6], use of these attributes could cause conflicts. In contrast, any HTML ele-
ment may have multiple classes [4], so our use of semantic class names ensures
interoperability.
2 In these examples, underlined text denotes PMF-related additions.



Password-manager friendly (PMF) 5

4.2 Forms

Being able to reliably determine the type or purpose of a given form enables
a software agent like a password manager to o�er a richer and/or more consis-
tent user experience. form elements should be marked with the semantic classes
specified in Table 1.

Table 1. Semantic classes for forms.

Form type Semantic class name
Login pmf-login
Registration pmf-registration
Change password pmf-change-password
Password reset pmf-reset-password

4.3 Inputs

Username Login and registration forms typically contain an input element
of type text or email for entering a username (which is often the user’s email
address). These inputs should be marked with the pmf-username class:

Username or email address :
<input type="text" name="user" class="pmf-username"/>

Password resets and changes are tricky for a password manager because the
software cannot tell—in the case where a user may have multiple accounts with
the same website—which password is being changed. For example, a simple
experiment using Firefox’s built-in password manager and two Google accounts
reveals that, in some cases, the password manager must prompt the user to ask
which account they are updating the password for, even though they are already
logged in.

We propose that site authors should include a hidden-type field in these
forms, marked with the pmf-username semantic class and with its value set to
the username of the relevant account:

<form action ="/reset " method ="POST" class="pmf-reset-password">
<input type="hidden" class="pmf-username" value="jimbojones"/>
...

</form >

Passwords Inputs for passwords typically appear in all four of the above form
types. Some password inputs, such as those in registration forms, are for new
passwords, while others are for existing passwords. These sub-types are unam-
biguously distinguished by the pmf-new-password and pmf-password semantic
classes respectively. It is useful to distinguish them because they appear together



6 Frank Stajano, Max Spencer, Graeme Jenkinson

in “change password” forms. These typically contains three password-type in-
puts, one for the user’s current password and two for their desired new password
(one to confirm the other). All three will have a di�erent name attribute values
but, using semantic class names, the purpose of each input is made clear:

<form action ="/ change " method ="POST"
class="pmf-change-password">

<input type=" password " name=" current " class="pmf-password"/>
<input type=" password " name="new" class="pmf-new-password"/>
<input type=" password " name=" confirm "

class="pmf-new-password"/>
</form >

Stay signed in Many login forms include a “stay signed in” check box which
allows the user to control whether their session with a website should persist
across multiple browser sessions. If present, this input should be marked with
the pmf-stay-signed-in class:

Stay signed in?
<input type=" checkbox " name=" persist "

class="pmf-stay-signed-in"/>

Annotating the “stay signed in” check box allows a software agent to apply a
global policy on staying signed in for the user, across all websites. Many websites
tick the “stay signed in” box by default and users accept this. But, if their
password manager could apply a “never stay signed in” policy for them, they
may be happy for it to do so and thereby gain a valuable security (and privacy)
boost by not being permanently signed-in to their online accounts.

Another scenario in which this feature might be useful is the cybercafé: for
the benefit of the patrons, the web browsers installed on the public cybercafé
machines might be configured to disable the “stay signed in” feature by default.

Hidden inputs Forms often contain hidden-type input elements which are not
visible when the HTML is rendered3. As human users are normally unaware of
and cannot interact with these inputs, it is not useful for a software agent acting
on the user’s behalf to be able to interact with them either and we don’t propose
any additional markup.

4.4 Password policies

Large-scale password leaks have shown that many users optimise for memorabil-
ity and convenience rather than security, choosing trivially-guessable passwords
3 The values of these hidden inputs are usually populated by the web server when

it generates the HTML of the page and then not changed on the client side. For
example web frameworks, such as Django [7], use them to implement Cross Site
Request Forgery protection.



Password-manager friendly (PMF) 7

like 123456, qwerty or password. Password composition policies (“between 8
and 16 characters, of which at least one uppercase, one digit and one symbol”)
are an attempt to enforce selection of passwords that will be harder to guess.
Although we may not agree with the password policies that websites impose,4
we believe that their rules should be made available in machine-readable form
to allow password managers to generate strong compliant passwords.

In this section we therefore define a simple specification for a machine-
readable (JSON) description of a password composition policy. Our goals have
been to make it easy for the website developer to write their intended policy and
for the spec to be su�ciently expressive that most commonly observed policies
can be represented with it.5

A machine-readable password composition policy is included in an HTML
document as the value of a hidden-type input element6. This hidden input should
be marked with the pmf-policy semantic class and appear within a form with
the pmf-register semantic class. A library routine, written once and for all
as part of the standard, can then generate the corresponding human-readable
version and localize it to any language7:

<form action ="/ register " method ="POST" class="pmf-register">
...
New password :
<input type=" password " name="new" class="pmf-new-password"/>
<input type="hidden" class="pmf-policy" value=’

Machine-readable policy as a multiline string

according to the syntax described below.

’/>
Human-readable policy

...

4 The debate on whether they are e�ective would sidetrack us into a di�erent discus-
sion; what we note here is that such policies may reject some otherwise very strong
passwords such as those that a software agent might generate. For example because
they exceed the maximum length, or because they fail to include a character from
one of the classes, or because they include a disallowed character, maybe outside
the ASCII range. Bonneau and Xu’s study [8] of non-ASCII passwords, or more
accurately of passwords from people whose native language doesn’t fit into ASCII,
is instructive.

5 We have strongly resisted the temptation to cover absolutely all cases and become
Turing-complete. Useful rules that our notation cannot express include blacklists of
known weak passwords and stateful checks such as “you can’t use your username or
a variation of it”. But such violations are very unlikely to occur if the password is
generated randomly.

6 Note that, to allow double quotes in the policy as required by the JSON syntax,
the whole policy must be enclosed in single quotes. The policy itself won’t normally
contain single quotes but, should it need to, those must be escaped.

7 The routine could even be embedded as JavaScript in the page itself. Alternatively,
the translation to human-readable form could be performed o�ine and the result
statically embedded in the page, as in this example.



8 Frank Stajano, Max Spencer, Graeme Jenkinson

</form >

The policy optionally specifies a minimum and a (bleah)8 maximum length
as non-negative integer fields. It then specifies what classes of characters are
allowed and which classes the password must contain.

In the spirit of the 2014 Stanford password policy [9], we allow the rules to be
more strict for short passwords but more relaxed for long ones: this is achieved
in practice by defining multiple sub-policies that apply depending on the length
of the password.

Character class notation Several common character classes are predefined
in Table 2. Although many current password systems only work with ASCII
characters, for future-proofing we allow the definition of password policies that
allow arbitrary subsets of Unicode characters. Arbitrary character classes can
thus be defined by enumerating the Unicode characters they contain, in any
order, in a JSON list. For example, the symbol class could also be written as

["!", "@", "#", "$", "%", "&", "*", "-", "+", "/", "="]

or, using Unicode escape sequences,9 as
[

"\u0021", "\u0040", "\u0023", "\u0024", "\u0025",
"\u0026", "\u002a", "\u002d", "\u002b", "\u002f",
"\u003d"

]

As a shorthand, contiguous ranges of Unicode characters in the list can be spec-
ified by listing the first and last character with the string "..." between them.
For example, the digit class could be written as

["\u0030", "...", "\u0039"]

Table 2. Predefined character classes

String constant Class contents
"lower" the 26 lowercase ASCII letters
"upper" the 26 uppercase ASCII letters
"digit" the 10 ASCII digits
"symbol" the following 11 symbols10: ! @ # $ % & * - + / =
"base64" the 64 ASCII characters defined by the “base 64” encoding
"ascii" the 95 printable ASCII characters from 32 (space) to 126 (tilde)

8 We believe setting a maximum password length is a dumb idea but here we are
trying to allow websites to express their policy in machine-readable format rather
than compelling them to switch to a sensible policy.

9 "\u" followed by 4 hexadecimal digits (http://json.org/)

http://json.org/


Password-manager friendly (PMF) 9

Simple policies Most of the policies observed in the wild are “simple” policies
that apply the same character class requirements to passwords of all lengths.
Simple policies are represented by a list of length one, containing a single sub-
policy object:

[
{

minLen : 8,
mustHave : ["upper", "lower", "digit"],
mayHave : [" base64 ", "�"],

}
]

In the above example, the password must have a length of at least 8 characters
inclusive; it must contain at least one character from each of the three classes
listed on the mustHave line11; and it may also contain any character in any of
the two classes listed on the mayHave line.

For example the amazon.com policy, at the time of writing, simply requires
the password to be between 6 and 128 characters and can therefore be rendered
as follows.12

[
{

minLen : 6,
maxLen : 128,
mustHave : [],
mayHave : ["ascii"]

}
]

Complex policies A complex policy is one where, as in the Stanford policy
[9], the password composition rules depend on the length of the password. It
consists of a list of two or more sub-policies with non-overlapping length ranges.
If a certain password length is not included in any of the ranges, then passwords
of that length are not allowed. For example, Fig. 1 is a rendering of the Stanford
policy as written up in their poster.

4.5 Errors

As mentioned previously, determining whether a login attempt (or other action)
was successful or not is a di�cult problem for software agents, because at the
HTTP layer a “200 OK” status code is returned in both cases. The user is in-
formed of any problems using prominent human-readable error messages within
11 Our notation cannot express more elaborate rules such as “must include characters

from at least 3 of these 5 classes”.
12 The mayHave line is just guesswork: we have not tested whether Amazon allows even

more characters—perhaps even non-ascii ones.

amazon.com


10 Frank Stajano, Max Spencer, Graeme Jenkinson

[
{

minLen : 8,
maxLen : 11,
mustHave : ["upper", "lower", "digit", "\u0020",

"...", "\u002f"],
mayHave : "ascii";

},
{

minLen : 12,
maxLen : 15,
mustHave : ["upper", "lower", "digit"],
mayHave : "ascii";

},
{

minLen : 16,
maxLen : 19,
mustHave : ["upper", "lower"],
mayHave : "ascii";

},
{

minLen : 20,
mustHave : [],
mayHave : "ascii";

},
]

Fig. 1. Stanford password policy expressed in the PMF policy language.



Password-manager friendly (PMF) 11

the returned HTML page, but we would like these messages to be just as easy
to find for machines.

We propose marking these error messages with the pmf-error semantic class
name to make them trivial for software agents to find:

<p class="pmf-error">Incorrect username and/or password </p>

5 Related work

Bonneau and Preibusch’s [10] comprehensive review of the authentication land-
scape on the web argues that some sites deploying passwords do so primarily
for psychological rather than security reasons. For example, they speculate that
password-protecting accounts serves as a justification for collecting marketing
data and as a way to build trusted relationships with customers. Whatever the
underlying reasons, it is apparent that the number of password-protected ac-
counts an average user manages has increased markedly since the advent of the
web. Florencio and Herley [11] report that the average user has 6.5 passwords,
each of which is shared across 3.9 di�erent sites. Furthermore, each user has
about 25 accounts that require passwords. Without the reported level of pass-
word reuse, managing 25 separate accounts with unique random passwords is
barely imaginable for most users.

A password manager, either as a separate program such as PasswordSafe
[12] or integrated with or in the browser, is now a well established solution
for managing the increasing burden password-based authentication on the web.
Given the increasing reliance on password managers13, a recent thread of research
has investigated their security properties.

Gasti and Rasmussen [13] investigate the security properties of the password
database formats used in range of popular password managers. They define two
new games to analyse the security of password manager databases: indistin-
guishability of databases (IND-CDBA) game and chosen database (MAL-CDBA)
game; the indistinguishability of databases game models the capabilities of a re-
alistic passive adversary, and the chosen database game models the capabilities
of an active adversary able to both read and write the password database file.
Google Chrome stores plaintext username/passwords in the user’s profile direc-
tory. As a result, an attacker can trivially win both the IND-CDBA and MAL-
CDBA games with Chrome as the Challenger. Firefox also fails both games;
however, Firefox optionally allows users to encrypt the passwords stored in the
password managers database under a user-supplied master key. This option pro-
vides at least some security benefits over Google Chrome’s password manager,
even if the full benefits of indistinguishability under the IND-CDBA and MAL-
CDBA games aren’t a�orded. Gasti and Rasmussen’s analysis concludes that,
among the systems they studied, only PasswordSafe v3 [12] is invulnerable to
attackers under the IND-CDBA and MAL-CDBA security models.
13 As an example, 1Password alone is estimated to have a install base of 2 to 3 million

users.



12 Frank Stajano, Max Spencer, Graeme Jenkinson

Silver et al [14] identify a class of vulnerabilities exploitable when using
several popular passwords managers. The treat model they consider is a user
connecting to a network controlled by the attacker, such as a rogue WiFi hot-
spot. Under this model the attacker is able to inject, block and modify packets on
the network. The attacker’s goal is to extract passwords stored by the password
manager without further action from the user. The attacks presented by Silver
et al rely on exploiting the password manager auto-filling policies: for example,
the password manager can be coerced into auto-filling forms in invisible iframes
embedded within the WiFi hot-spot’s landing page.14

Li et al [15] analysed the security of five popular integrated password man-
agers (that is, password managers integrated with or in the web browser). Four
key concerns with browser-based password managers were identified in this
study: bookmarklet vulnerabilities, web vulnerabilities, authorisation vulnerabil-
ities and user interface vulnerabilities. Bookmarklet15 vulnerabilities, introduced
by Adida et al [16], result from the bookmarklet’s code running in a JavaScript
environment potentially under the control of an attacker. Li et al show that such
vulnerabilities are still widespread in popular password managers. The web vul-
nerabilities identified by Li et al consist of well know cross-site request forgery
(CSRF) and cross-site scripting (XSS) attacks. The authorisation flaws identi-
fied by Li et al result from sloppy implementations. User interface vulnerabilities
can be considered as phishing attacks against the password manager itself. In
cases where the user is not authenticated to their password manager, a num-
ber of in-browser password managers automatically open the login form for the
password manager in an iframe. Users have no means to di�erentiate between
this behaviour and a phishing attack.

Password managers should be considered as tactical solutions, alleviating
some of the gross security and usability failings of passwords. Pico [17] is a
strategic solution seeking a more usable and secure replacement for passwords
everywhere they are used (not just on the web). Recent work on Pico has at-
tempted to provide a mechanism that can work alongside passwords [18]. The
Pico bootstrapping technologies, whilst not being a password manager in the
classic sense, are required to parse and automatically submit login forms on the
user’s behalf and would thus also benefit from our semantic annotations.

14 Auto-filling of forms by the password manager improves usability and therefore,
before mitigating this vulnerability by disabling the auto-filling, careful consideration
is needed of the inherent trade o� between security and usability. We shouldn’t lose
sight of the fact that normal users don’t have threat models; therefore, simply asking
them whether they want to enable or disable auto-filling is a bit of a cop out.

15 A bookmarklet is a bookmark containing JavaScript that can be used to extend a
web browser’s capabilities. Bookmarklets have advantages over alternatives such as
addons or extensions as they are cross browser and are managed by the user like
bookmarks.



Password-manager friendly (PMF) 13

6 Conclusions

All password managers rely on fallible heuristics. Such code is complex, never
fully accurate and it requires constant updates, besides wasteful replication of
e�orts by every password manager developer. We argue that all parties would
benefit if websites o�ered a standard interface to password managers, enabling
consistent and accurate agent-supported password creation, registration and lo-
gin, without brittle programmatic guesswork.

Our PMF proposal, of augmenting a website’s password pages with simple
and unambiguous machine-readable semantics, makes the operation of password
managers much simpler and more reliable. Users benefit from reduced cognitive
load and reduced typing burden. Reliable generation of strong random pass-
words increases security for both users and websites. A well-defined interface
eliminates guesswork and makes the password manager code leaner and much
easier to maintain. We feel PMF is beneficial for all parties involved: users,
website operators, password manager developers. We will be pleased to work
with developers of websites, browsers and password managers, as well as with
standards bodies, to promote its widespread adoption.

7 Acknowledgements

References

1. Pinterest. https://pinterest.com Accessed: 2014-11-07.
2. OWASP: Cross-site request forgery (csrf) prevention cheat sheet.

https:///www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%
29_Prevention_Cheat_Sheet (August 2014) Accessed: 2014-11-06.

3. Beautement, A., Sasse, M.A., Wonham, M.: The compliance budget: Managing
security behaviour in organisations. In: Proceedings of the 2008 Workshop on New
Security Paradigms. NSPW ’08, New York, NY, USA, ACM (2008) 47–58

4. Berjon, R., Faulkner, S., Leithead, T., Pfei�er, S., O’Connor, E., Doyle Navara,
E.: HTML5. Candidate recommendation, W3C (October 2014)

5. Stuven, Sybrel (W3C): Use class with semantics in mind. http://www.w3.org/
QA/Tips/goodclassnames Accessed: 2014-11-07.

6. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard) (October 2012)

7. Django documentation: Cross Site Request Forgery protection. https://docs.
djangoproject.com/en/1.7/ref/contrib/csrf/ Accessed: 2014-11-07.

8. Bonneau, J., Xu, R.: Of contraseñas, sysmawt, and mìmǎ: Character encoding
issues for web passwords. In: Web 2.0 Security & Privacy. (May 2012)

9. Stanford University. https://itservices.stanford.edu/service/accounts/
passwords/quickguide Accessed: 2014-11-07.

10. Bonneau, J., Preibusch, S.: The password thicket: technical and market failures in
human authentication on the web. In: WEIS 2010. (2010)

11. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web. WWW ’07, New
York, NY, USA, ACM (2007) 657–666

https://pinterest.com
https:///www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https:///www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
http://www.w3.org/QA/Tips/goodclassnames
http://www.w3.org/QA/Tips/goodclassnames
https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/
https://itservices.stanford.edu/service/accounts/passwords/quickguide
https://itservices.stanford.edu/service/accounts/passwords/quickguide


14 Frank Stajano, Max Spencer, Graeme Jenkinson

12. Schneier, B.: Password safe. https://www.schneier.com/passsafe.html Ac-
cessed: 2014-11-06.

13. Gasti, P., Rasmussen, K.B.: On the security of password manager database formats.
In: ESORICS. (2012) 770–787

14. Silver, D., Jana, S., Boneh, D., Chen, E., Jackson, C.: Password managers: Attacks
and defenses. In: 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, USENIX Association (August 2014) 449–464

15. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:
Security analysis of web-based password managers. In: 23rd USENIX Security
Symposium (USENIX Security 14), San Diego, CA, USENIX Association (August
2014) 465–479

16. Adida, B., Barth, A., Jackson, C.: Rootkits for javascript environments. In: Pro-
ceedings of the 3rd USENIX Conference on O�ensive Technologies. WOOT’09,
Berkeley, CA, USA, USENIX Association (2009) 4–4

17. Stajano, F.: Pico: no more passwords! In: Proceedings of the 19th international
conference on Security Protocols. SP’11, Berlin, Heidelberg, Springer-Verlag (2011)
49–81

18. Stajano, F., Jenkinson, G., Payne, J., Spencer, M., Sta�ord-Fraser, Q., Warrington,
C.: Bootstrapping adoption of the pico password replacement system. In Chris-
tianson, B., Malcolm, J.A., Matyás, V., Svenda, P., Stajano, F., Anderson, J., eds.:
Security Protocols XXII - 22nd International Workshop Cambridge, UK, March
19-21, 2014 Revised Selected Papers. Volume 8809 of Lecture Notes in Computer
Science., Springer (2014) 172–186

View publication statsView publication stats

https://www.schneier.com/passsafe.html
https://www.researchgate.net/publication/268504144

	Password-manager friendly (PMF):Semantic annotations to improve the effectiveness of password managers

