
Integrating Synchronous and Asynchronous Collaboration

With Virtual Network Computing

 Sheng Feng Li Quentin Stafford-Fraser and Andy Hopper♣♠

Department of Engineering♣ AT&T Laboratories Cambridge♠

University of Cambridge 24a Trumpington Street
Cambridge CB2 1PZ, UK Cambridge CB2 1QA, UK
 sfl20@eng.cam.ac.uk {qsf, ah}@uk.research.att.com

Abstract

The trend in computing models has changed from
thin-client (text terminals) to thick-client (graphics
terminals) to standalone personal computing (PCs), and
then back to thick-client (client/server applications) and
thin-client (Web-based applications) again. This trend is
now leading us to the so-called stateless-client
computing, which is an ultra-thin-client model that frees
the client completely from preserving any application
state. This paper explains how we integrate synchronous
and asynchronous sharing of workspace with Virtual
Network Computing, a stateless-client computing
technology developed at the AT&T Laboratories
Cambridge. Experiments and applications have
demonstrated that our collaborative system is feasible for
operation in current and future computing environment.

1. Introduction

In the early days of computing, the communication
between users and computers was via some media such as
punched cards or paper tapes. In 1963, the Compatible
Time-Sharing System (CTSS) that links a large number of
users to a single computer via remote terminals was
developed at MIT [1]. The terminals and their terminal
emulators provide a character interface, and are usually
portable in size and limited in functionality.

Text terminals are sometimes referred to as dumb
terminals because they can’t run graphics. The simplest
solution to upgrade to graphics terminals is to enable the
host computer to send bitmaps continuously across the
network. As recently as early eighties, terminals were

typically connected to the central host computer via serial
lines between 1200 and 19200 baud. For basic terminals
such as VT100, a complete screen refresh takes a few
seconds over the serial line, but for terminals that display
bitmaps, the network load would be unacceptable. A more
network-efficient solution is to provide an intelligent
terminal that understands how to draw graphics objects
without bitmaps. In 1984, MIT created the X Window
System [2]. The X terminal or the X server running on
Unix workstations, PCs and Macintosh provides a WIMP
(Windows, Icons, Menus, Pointer) interface, but requires
a significant amount of system resources such as memory
and disk space.

In the mainframe model, control is totally centralised
and users have little control over data or applications. In
the early eighties, microcomputers such as Apple
Macintosh and IBM PC also arrived on the market with
windowing systems (e.g. Microsoft Windows) as a
standard. These personal computers offer a great degree
of flexibility and freedom. They not only provide terminal
emulators for access to mainframes and workstations, but
also transfer the control of resources to local users.

The services offered by standalone desktops could
not meet the increasing demands from users and
applications. In addition, isolation of resources made
enterprise-wide information sharing very difficult. Soon
the personal computers and workstations were networked
together to provide a more powerful and reliable system,
and client/server computing emerged as the method of
choice for it preserves the local functions on the desktop,
while at the same time, provides centralised control of
backend data and applications [5].

As the number of users and applications for personal
computers increases, so does the administration and
maintenance cost. Since the nineties, a simpler computing
model is emerging, driven by the growth of the Internet.
Thin-client computing, as embodied in Network
Computers (NCs) and Windows-based Terminals, moves
most application functionality back to the server and
leaves only the user interface on the desktop. This higher
degree of centralisation simplifies the administration and
maintenance process. The thin-client architecture can be
combined with the World Wide Web, where the Web
browser itself is a thin client, which makes thin-client
computing almost synonymous with internet computing
[3].

Where is thin-client computing headed and how thin
can a client reach? The history of computing models once
ruled out the proposal that sends bitmaps continuously
across the network from the host computer to the
terminals because of the network overload. The fast
growth in network speed draws our attention back to
reconsider this proposal. The dumb graphics terminal that
simply displays bitmaps is what we call a stateless
terminal, for the entire state of all the applications in the
user session is managed in the host computer. Stateless-
client computing, which centralises all resources and
functionality on the server, seems to be the next logical
step in the evolution of computing models. The next
section will describe this new computing model in details,
using Virtual Network Computing (VNC) as an example
[6].

Our research is motivated by the observation of the
lack of support for collaborative activities. In our labs, we
work closely with our colleagues who may be
geographically or temporally separated from us. The
Shared Whiteboard Tools and the Shared Application
Tools described in [4] can not offer sufficient support as
they only operate in synchronous mode. We envision a
collaborative system that continuously projects the screen
of one computer onto that of another, so that two or more
people can share workspace simultaneously. While at the
same time, the screen is continuously recorded for future
replay. The principle of this collaborative system seems to
coincide with that of the stateless-client computing
systems where bitmaps of the screen are sent continuously
across the network. So the question now becomes, can we
make use of stateless-client systems to support workspace
sharing? This research is set to explore the potential
collaborative features of stateless-client computing, and
the paper argues that stateless-client systems can be
enhanced to enable the sharing of computer workspace
both synchronously and asynchronously.

2. Virtual Network Computing

The VNC technology pushes the thin-client
computing model to an extreme by moving the execution
of applications completely to the server, leaving the client
stateless. Without changing any windowing system, VNC
breaks it into client/server pieces, namely the VNC server,
the VNC client and the VNC protocol that connects the
previous two.

The VNC server executes all the applications and
generates the frame buffer. The VNC client displays the
frame buffer and accepts user input. And the VNC
protocol defines the mechanism that transfers the frame
buffer updates from the server to the client, and the user
input from the client to the server. Figure 1 shows the
VNC client (also known as the VNC Viewer) running as a
Java applet in the Web browser.

The VNC client sends the following messages to the
server:
• Frame buffer update request notifies the server that

the client is ready to receive and display the next
frame buffer update. The server responds to this
message by sending a frame buffer update message.

• Key event indicates a key press or release when the
client receives key input from the user.

• Pointer event indicates either pointer movement or a
pointer button press or release when the client
receives mouse input from the user.

The VNC server sends the following messages to the
client:
• Frame buffer update replies to the frame buffer

update request message from the client. It consists of
a sequence of rectangles, each representing a
rectangular area of the frame buffer. Together, these
rectangles cover the frame buffer area which has been
changed since the last update. Each rectangle

Figure 1. VNC Viewer operating netscape,
xterm, xcalc, and xclock

uniquely identifies a rectangular area of the frame
buffer by specifying the x, y coordinates of the area’s
upper-left corner, and its width and height. The
rectangle also specifies the encoding scheme the pixel
data of its represented area will follow. In the case of
raw coding (i.e. no encoding at all), it lists the pixel
values in the scan-line order, i.e. from left to right and
from top to bottom.

The VNC protocol is very similar in concept to the
Independent Computing Architecture (ICA) protocol used
in Citrix Systems [11], the T.128 (formerly known as
T.SHARE) application sharing protocol used in
NetMeeting [7], and the native protocol used in Sun Ray
Hot Desk architecture [8]. The VNC protocol has the
advantage of being platform independent, so that we can
share X-Window applications on Windows-NT platforms,
and Windows applications on Unix platforms.

3. System architecture and functionality

The VNC client and server communicate through
socket connections. We extend the client/server
architecture by seamlessly placing a proxy between the
two components to intercept and manipulate the message
streams. The proxy merges all the messages from the
multiple clients and forwards these messages to the server
as if they were from a single client; while on the other
hand, it multicasts the messages from the server to each
client and enables the clients to share the server
simultaneously. It expands a one-to-one client/server into
a many-to-one multi-client/server communication channel,
where each client receives exactly the same messages
from the server as the others participating in the
collaborative session. The messages flowing between the
clients and the servers are time-stamped and stored, and
can be played back at the same rate as they were recorded.

The proxy monitors and coordinates the activities of
the VNC clients and servers. It provides the coordination
mechanism through the following services:

• Register This service allows the clients and the
servers to register themselves in the Module Table
after they connect to the proxy. The proxy keeps track
of all the components currently connected to it and
facilitates a simple notification service to the clients.
It acts as a session server where the user-related states
such as the number of participants are centralised.
When there is a change of the shared states, it will
notify all the participating clients.

• Remove This service allows the clients and the
servers to remove themselves from the Module Table
before they disconnect from the proxy.

• Route This service allows the clients and the
servers to send messages to each other. The proxy
maintains a Route Table that specifies the destination
components for messages sent by each source
component.

• Record This service allows the clients and the
servers to record the messages sent by them. The
recording is performed by the proxy and stored in the
log files.

• Request This service allows the clients to request
the floor. After a VNC client obtains the floor, the
proxy only routes the user events coming from this
particular client and our system enters the supervision
mode, i.e. only this supervising client can operate the
shared work session while the rest of the
collaborative clients can only view the session.

• Release This service allows the clients to release
the floor. When the VNC client releases the floor, our
system returns to its normal mode and the
collaborative clients can share the view and the
control of the remote work session.

• Reconnect This service allows the clients to switch
to a new VNC server. When this service is invoked,
the proxy closes the connection with the current VNC
server and reconnects to a new server. The
collaborative clients can now decide whose server is
to be shared and dynamically switch between various
homogeneous and heterogeneous servers in a shared
work session.

• Report This service generates auditing reports
on messages flowing between the clients and the
servers.

Our VNC Reviewer reads from the log file of frame
buffer update messages and replays the captured activities
with VCR-like control similar to playing back a video
tape. The Reviewer also provides various browsing and
searching facilities for users who wish to browse through
the captured activities or to search for a particular event or
event sequence in the recording [9].

4. Experiments

We are trading off bandwidth and storage capacity for
a platform independent thin-client architecture. This
section explains why such a trade-off is acceptable by
measuring the bandwidth and storage consumption of our
system with carefully designed experiments.

We designed three tasks to be performed by a number
of collaborative users who share workspaces and
applications in a work session displayed by Figure 1, and
who communicate with each other on telephone. The

VNC server and the proxy are executing on a UNIX
workstation at AT&T Laboratories Cambridge. The
primary user runs the VNC client as a Java applet within a
Netscape Web browser on a Windows-NT workstation
from the Engineering Department of Cambridge
University with a shared 10Mbps connection to the
servers, and performs the three tasks specified below. The
secondary users run the VNC clients as Java applications
on UNIX workstations at AT&T with shared 10Mbps or
100Mbps connections to the servers, and share the view of
the collaborative session.

• In task 1, the primary user types 10 lines of “Hello
World” in the vi editor. This task involves key events
only.

• In task 2, the primary user clicks “1+2+…+10=” in
the calculator, and drags the calculator to a new
location after the result of the calculation appears.
This task involves mouse events only.

• In task 3, the primary user launches a Netscape
browser with the geometry 600×400, then goes to the
book-marked AltaVista search engine page and
searches for the word “CSCW”. Once the search
results start to appear, he presses the “Page Down”
key to view the list of the first 10 matches. This task
involves key and mouse events, and image rendering.

The frame buffer updates are transmitted without any
encoding or compression scheme. Graph 1 and 2 show
how the time required to complete the tasks and the
average data transmission rate for each client change as
the number of VNC clients increases from one to four.
The results are obtained by taking the average of three
consecutive trials.

Graph 1 shows that the task completion time tends to
increase as the number of clients increases. This is
because the network where these tests are carried out does
not support multicast by internal mechanism, and
multicasting server messages to multiple clients are
implemented by multiple biparty or point-to-point
connections. This is of course uneconomical, in terms of
processing costs at the proxy and the communication cost
between the proxy and the clients. It places an
unnecessary overload on some segments of the network
that have to carry multiple identical flows, and more
clients usually cause more congestion and delay. This also
explains why task 3, where there are significantly more
frame buffer updates than task 1 and 2, suffers more as the
number of clients increases.

Most high-level network protocols such as the
Transmission Control Protocol (TCP) only provide a
unicast transmission service. If a node wants to send the

same information to multiple destinations using a unicast
transport service, it must perform a replicated unicast, and
send multiple copies of the data to each destination in
turn. Therefore, similar to audio and video conferencing,
the number of VNC clients that can connect to the proxy
is usually limited by the network bandwidth. A better way
to transmit data from one source to multiple destinations
is to provide a multicast transport service [10]. With a
multicast transport service, a single node can send data to
multiple destinations by making just a single call on the
transport service, and the data is only duplicated when the
transmission route diverges. Multicast transmission such
as IP multicast provides important performance
optimisation over unicast transmission in bandwidth-
intensive real-time audio and video conferencing, and
similarly in our system.

Graph 2 shows that the average data transmission rate
for each client decreases as the number of clients
increases. The cause of this decrease in rate per client is
twofold. Firstly, the VNC protocol has an adaptive quality
in the client’s computing and networking environment: the
slower the client and the network, the lower the rate of
update. This is because frame buffer update is demand-
driven by the client. That is, the server sends an update
only when the client sends an explicit request, and all

Graph 1 Task Completion Time

0
20
40

60
80

100
120

140
160

1 2 3 4

Number of Clients

T
im

e
(s

ec
on

ds
)

Task1

Task2

Task3

Graph 2 Average Data Transmission
Rate For Each Client

0.00

0.10

0.20

0.30

0.40

1 2 3 4

Number of Clients

D
at

a
T

ra
ns

m
is

si
on

 R
at

e
(M

bp
s)

Task1

Task2

Task3

screen changes since the client’s last request are coalesced
into a single update. At the proxy where the update
requests are merged, the faster clients have to wait for the
slower clients. Therefore the more the clients, the lower
the rate of requests, and the fewer the updates to transmit.
Secondly, with more clients, it takes a longer time to
complete the tasks as the result of increasing congestion
and delay. Although the data transmission rate per client
drops as the number of clients increases, the total data
transmission rate at some segments of the network
actually grows because multiple point-to-point
connections share these segments and hence the data
transmission rate there is multiplied.

To summarise, the system requires the network
bandwidth to support the data transfer rate of up to 4Mbps
at peak time during our daily activities. This requirement
is further reduced by various encoding schemes we apply
to the pixel data.

Table 1 shows the amount of data (in megabytes)
transmitted from the VNC server to the VNC clients and
stored by the proxy server during the task sessions with
two collaborative users. Raw size shows the recording size
when the frame buffer updates are transmitted and saved
without any encoding or compression scheme while
encoded size is the recording size when various encoding
schemes are applied to the pixel data. The details of the
encoding schemes can be found in [6]. The recording
sizes shown do not include the size of the initial whole
screen image transmitted and stored (which is 0.44
Mbytes if the data is not encoded) when the user first
signs into the work session. When users first connect to a
work session, they will receive a whole screen image
reflecting the current state of the session. The following
frame buffer updates only cover the part of the screen that
is changed since the last update, and their sizes are usually
much less than the size of the whole screen.

Table 1. Recording size
Task1 Task2 Task3

Raw size (MB) 0.40 0.10 2.86
Encoded size (MB) 0.03 0.06 0.77

5. Conclusion

VNC supplies a live and mobile desktop that can be
accessed from any Internet-connected machine. Built on
the VNC technology, our system enables this desktop to
be shared for synchronous collaboration and stored for
asynchronous collaboration.

The simplicity of the VNC protocol allows it to be
applied to a wide range of hardware devices. We have
demonstrated in [6] the VNC server that runs on Unix
workstation and produces an X-Window desktop, and the
VNC server that runs on Window-NT workstation and
produces a Windows desktop. VNC servers can also be
programmed to run on any hardware devices other than
computer workstations, e.g. on CD players, telephone
answering machines, etc. The servers generate display
interfaces for hardware devices directly without any
reference to a windowing system or frame buffer, and the
display interfaces can be accessed from any VNC Viewer
anywhere.

Thus, we envisage a “virtual desktop”, where users
can decide on the components to be included in their
computing environment. They can choose to run a number
of VNC Viewers that access remote computer
workstations and hardware devices with a real-time view,
and some of the views are shared with other users. They
can also run a number of VNC Reviewers that access
stored computer sessions with a non-real time or delayed
view. This desktop of desktops (and other display
interfaces) offers much flexibility in creating a new
collaborative computing environment.

Reference

[1] T. Vleck, “The IBM 7094 and CTSS”, http://www.
multicians.org/7094.html, 1997.

[2] N. Mansfield, The Joy of X: An Overview of the X Window
Systems, Addison-Wesley, ISBN 0-201-56512-9, 1993.

[3] P. Taylor, “Internet reshapes world computing”, Financial
Times, Wednesday November 3, 1999.

[4] F. Fluckiger, Understanding networked multimedia, Prentice
Hall, 1995

[5] R. Orfali, D. Harkey, and J. Edwards, “The Essential
Client/Server Survival Guide”, Third Edition, John Wiley &
Sons, 1999.

[6] T. Richardson, Q. Stafford-Fraser, K. R. Wood and A.
Hopper, “Virtual Network Computing”, IEEE Internet
Computing, vol.2, no.1, Page 33-38, January/February, 1998

[7] Microsoft Corporation, NetMeeting 2.0 Reviewers Guide,
June 1997, http:// www.microsoft.com/netmeeting/

[8] Sun Microsystems, Deploying the Sun Ray Hot Desk
Architecture, August 1999, http://www.sun.com/sunray1/
hotdesk.html

[9] S. Li, M. Spiteri, J. Bates and A. Hopper, “Capturing and
Indexing Computer-based Activities”, Proceedings, 2000
ACM Symposium on Applied Computing (to appear), Como,
Italy, 19-21 March, 2000.

[10] R. Steinmetz and K. Nahrstedt, Multimedia: Computing,
Communications and Applications, ISBN 0-13-324435-0,
page 412, 1995.

[11] J. P. Kanter, Understanding Thin-Client/Server Computing,
Microsoft Express, ISBN 1-57231-744-2, 1998.

