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Abstract—Driving is a cognitively demanding task, and many
current navigation systems present confusing guidance instruc-
tions that add to the distraction. Human navigators, by contrast,
schedule their advice to minimise distraction, and phrase instruc-
tions in terms of visible landmarks to avoid confusion. In this pa-
per, we present the basis for a ‘natural navigation’ system which
interprets distances as references to landmarks. We use Extended
Kalman Filtering to integrate visual odometry with other sensor
data in order to obtain precise vehicle motion, then, based on
the filtered motion parameters, we characterize recognised visual
landmarks as locations on the navigational map. The navigation
system can then use references to these landmarks in its driver
instructions rather than absolute distances. Experimental results
show that landmarks can be located on the navigational map
with sufficient accuracy using normal vehicle telemetry and a
dashboard camera.

I. INTRODUCTION

Turn-by-turn navigation is probably the most widely-used
driving assistance application. With the help of Global Posi-
tioning System (GPS) location information and accurate digital
maps, drivers are able to reach their destinations while driving
through unfamiliar areas. However, current in-vehicle naviga-
tion systems can lead to confusion and distraction as drivers try
to relate instructions involving distances and street names on
the displayed map to their surrounding physical environment,
a process which has been compared to assembling a jigsaw
puzzle [1]. In fact, humans tend to use landmarks, rather than
distances, when constructing spatial cognitive maps [2], and a
human-like guidance system that gives navigation instructions
in terms of landmark references – “turn right after the post
office” rather than “turn right in 100m” – should significantly
lower the driver’s cognitive load and reduce their navigational
errors [3].

We describe a prototype human-like guidance system for
driving navigation which uses landmark-based instructions.
Instead of using stored landmarks from a map [4], we detect
selected landmarks which can be easily recognized in images
captured by a dashboard camera. This allows the use of instant
visible and other non-map-based landmarks, and may also
enable us to bring in dynamic information like: “Follow the
yellow car turning left”.

In order for the navigation system to perceive and under-
stand the surrounding environment, we employ a variety of
computer vision techniques. The landmarks can be detected
in real time using a deep learning algorithm as described in

[5], after which we need to establish their position on the
navigational map. First, the vehicle motion is estimated from
a Visual Odometry (VO) algorithm which is tuned to fit the
driving scenario. Then an Extended Kalman Filter (EKF) is
applied to fuse the VO estimation with multi-sensor data to
estimate the vehicle’s position and orientation in each frame.
Meanwhile, feature points based on recognized landmarks
are extracted and tracked between frames. Finally, landmark
positions are reconstructed from these feature points using the
rectified vehicle motion models, and can therefore be located
on the navigation map.

This paper is organized as follows: Section 2 presents an
overview of related work. Section 3 details the methodology
of the approach. In Section 4, we discuss experimental results
and, finally, conclusions and future perspectives are presented
in Section 5.

II. RELATED WORK

Despite their popularity, in-vehicle navigation systems have
a great deal of room for improvement in order to provide a
better driving experience. Landmark-based navigation has the
potential to offer more human-like guidance instructions.

There are generally two approaches to landmark-based nav-
igation. The first uses a geographic information system (GIS)
[4] where landmarks are stored in a annotated map. Based
on the user’s location, nearby landmarks, also called Points
of Interest (POIs), are presented on the displayed map, and
referred to in audio instructions. However, visual information
is often crowded on the display, making it hard to read at
a glance. Recently, an Apple patent [6] describes referring
to restaurants and other landmarks in Siri’s turn-by-turn in-
structions, to make them sound more like directions from a
passenger in the vehicle. Despite the increasing availability of
annotated POIs, this approach has some limitations. First, this
information may easily become outdated, and is usually only
available for limited urban areas. Secondly, since the infor-
mation is decoupled from the current driving environment, it
can confuse and frustrate drivers when POIs are invisible or
hardly noticeable.

Another approach is to use Computer Vision techniques.
Immediate visual information, which is tightly coupled with
the driver’s perception, offers more flexible and relevant
guidance. Robertson and Cipolla’s work [7] can accurately
estimate the user’s location and orientation with a mobile



camera by matching the user’s view against a pre-stored
database. However, maintaining such a database is non-trivial,
and querying it may require significant computation and a fast
network connection. By contrast, Visual-based Simultaneous
Localization and Mapping (V-SLAM) [8], does not rely on a
predefined database, since it locates the user in their surround-
ing environment while building a spatial map at the same time.
It is computationally expensive, though, and such systems are
generally not suitable for long-distance driving because of the
accumulation of errors. A more practical approach, adopted
in this work, is mapping the surrounding landmarks from the
driver’s view onto an accurate navigational map. So far, there
has been much work on landmark selection and detection in
a real environment [5], [9], but relating the visual perception
(landmarks) to a digital map (localization) for navigational
purposes has rarely been discussed.

III. HUMAN-LIKE NAVIGATION GUIDANCE PROTOTYPE

With the help of deep learning techniques, landmarks of
interest can be detected efficiently [5]. Our task is to place
these on a navigational map in order to use them as guidance
references, which we do in three main stages. First, Visual
Odometry (VO) is applied to estimate ego-motion parameters
and the vehicle’s trajectory. Secondly, an Extended Kalman
Filter (EKF) is introduced to correct accumulative errors from
the vision-based motion estimation using multi-sensor data.
Finally, landmarks are reconstructed and located in the map,
based on the filtered vehicle motion parameters.

A. Monocular Visual Odometry

Monocular Visual Odometry [10] uses multiple-view geom-
etry to estimate the position and orientation of the camera/host-
vehicle at each instant from a sequence of images. Two
problems need to be tackled beforehand: keyframe selection
and scale ambiguity.

Keyframe Selection: With images taken from multiple
views, the rotation R and translation t of camera position
P can be estimated from corresponding feature points. It
is important, on one hand, to ensure the images contain
overlapping areas where sufficiently many feature points can
be matched. However, it is impossible to recover the correct
3D position of features points if two views are very close.
In a real driving scenario, key frame selection is usually
related to the vehicle’s dynamics: when the host vehicle is
moving quickly, all the frames should be used as keyframes,
but when it is nearly stationary, keyframes must be selected
with sufficient spacing to maintain a reliable VO estimation.

In our approach, by default, all acquired images are pro-
cessed as keyframes and the camera motion is estimated
between each successive frame. After the inclusion of a new
frame, a depth check is applied after the triangulation of
feature points. If the median of the reconstructed feature
depths exceeds a threshold δ, (which will occur when all
the feature points in the new frame are very close to their
positions in the previous frame), the changes between the two
views are considered to be unlikely to provide accurate motion

estimation. Usually it happens when the vehicle is stationary
or is only moving slightly. In this case, the current frame is
not considered as a keyframe and the vehicle position is not
updated for the moment, we call it ‘on-hold’ stage. Features
from the last valid keyframe are kept and tracked through
successive frames until obvious vehicle movement is detected.
At this point, the frame is labelled as a valid keyframe and
the vehicle motion during the ‘on-hold’ stage is updated by
interpolating the estimation between the new keyframe and the
previous one. The algorithm continues on this basis.

The threshold δ is obtained by correlation analysis between
reconstructed scene distances and vehicle data obtained from a
speed sensor. This processing can be done on-line or off-line.
At present, we estimate this threshold off-line and use it as a
predefined parameter. Fig. 1 shows the correlation of keyframe
selection with dynamic vehicle speed, where a keyframe flag
equal to 1 means the frame is selected as a keyframe, and 0
means otherwise. As we can see, when the speed of the host
vehicle reduces, fewer frames are selected.
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Fig. 1. Correlation of keyframe selection with vehicle speed

Scale determination: In monocular VO, the estimation of
the camera motion is limited by scale ambiguity. Different
methods have been used to infer the scale relative to real world
coordinates, but usually a reference object of a known size is
set in the scene to solve the ambiguity. However, this is hard to
do in a dynamic driving scenario. Song and Chandraker [11]
obtain the scale information by estimating the ground plane
and using the height of the camera above the ground. Our
dataset, however, provides no accurate information about the
camera pose and position, so we infer the scale information
from the vehicle’s speed using an Inertial Measurement Unit
(IMU) which is more precise and allows the algorithm to work
with dash cameras which may be relocated. Knowing the speed
of the vehicle and the frequency of the video frames, we can
calculate the displacement of the host vehicle between two
frames. After normalizing the translation vector, this speed per
frame is used as the scale in our experiment. Because the frame
rate is constant the scale sv then is noted as the accumulation
of speed per frame between two successive keyframes.

Finally, the instantaneous vehicle position estimated by the
visual odometry can be represented as:

Pk = RPk−1 + svt (1)

if both k− 1th and kth frame are keyframes, where Pk is the
position of camera at kth frame, sv is the scale as described



above, R and t are respectively the rotation and translation
matrix of the camera motion from the previous to the current
keyframe.

Algorithm 1 illustrates the tuned monocular VO algorithm.

Algorithm 1 Visual Odometry
1: keyframe1 ← frame(1) first frame;
2: scale sv ← v0 initial vehicle unit speed ;
3: on-hold stage frame count n← 0;
4: for each new frame k with k > 0 do
5: keyframe2 ← frame(k);
6: detection of features;
7: motion estimation [R|t] from features;
8: 3D reconstruction of feature points Pts;
9: if scene depth d(Pts) < δ then

10: if n == 0 then
11: position estimation: Pk ← RPk−1 + svt;
12: else
13: interpolate [R|svt] on frames in on-hold stage;
14: position estimation: Pk−n+1..Pk;
15: end if
16: update keyframe1 ← keyframe2;
17: sv ← vk;
18: else
19: on-hold stage frame count: n = n+ 1;
20: scale accumulation: sv ← sv + vk;
21: end if
22: end for

Fig. 2 presents the translation distance of the host-vehicle at
each frame from a short trajectory. It compares the translation
distance obtained from regular VO estimation with our tuned
monocular VO estimation from Algorithm 1. The moving
displacement obtained from GPS and IMU are also plotted as
reference. As can be seen, the regular VO failed to estimate the
vehicle’s motion during two segments: the first occurs when
the host vehicle is following behind a bus which is making the
same turning manoeuvre. In some frames the relative positions
of the two vehicles remain constant; the second failing segment
is when the host-vehicle is moving very slowly at a speed of
around 0.2m/frame (approximately 2m/s). After applying our
keyframe selection scheme and interpolation, the motion of
the host-vehicle can be estimated continuously and smoothly.
(Similar results could be seen in a graph of the vehicle’s
orientation estimation.) However, as we can see, the tuned VO
estimation still presents some deviations from the reference
IMU and GPS data.

For navigational purposes, the estimated path from VO
should be matched with the map, and the camera motion
from VO is used to recover scene geometry. To improve the
accuracy, GPS data and IMU data are introduced to fuse with
VO result. The camera rotation and translation obtained from
Algorithm 1 are used in the fusion process.

B. Data Fusion using Extended Kalman Filter
Camera motion estimation from VO can be inaccurate

because of accumulating errors as the driving session pro-
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Fig. 2. Comparison of regular/tuned monocular VO on translation estimation

ceeds. Optimization solutions such as Bundle Adjustment are
often implemented for vision-only odometry applications, but
these can be computationally expensive. For our navigation-
orientated applications, the natural choice was to correct the
localization and motion errors with GPS and IMU data; we
do this with Extended Kalman Filtering (EKF) [12].

State Model and Measurement: For natural navigation, in
addition to the accurate localization of the host vehicle in the
map, we need a landmark’s position relative to the host vehicle
and the planned trajectory. It requires accurate camera pose
and scale information at each frame to reconstruct and locate
these landmarks correctly. Therefore, in addition to position,
the vehicle’s orientation and the motion scale should also be
rectified with reference sensors. The filtering model is defined
as:

X = [x, z, θ, s]T (2)

x, z are the first and third elements in the camera position
P in world coordinate, they represent the host vehicle’s 2D
location on the ground plane, θ is the yaw angle of vehicle
motion, s is the scale from Algorithm 1.

Relative, reference sensor observations are used for mea-
surement:

Z = [xgps, zgps, θimu, sgps]T + β (3)

where, xgps, zgps are the GPS-derived location of the vehicle,
θimu is the difference of heading angle estimated from the
IMU, sgps is the displacement distance estimated by the GPS
per unit time, and β ∼ N (0,W ) is the measurement noise
described in the sensor device’s manual. W is the covariance
matrix of measurement.

The GPS data is quite noisy as shown in Fig. 2. In the
absence of detailed signal strength information from the GPS
receiver in the VBOX, we estimate instant GPS accuracy from
the number of satellites being tracked. GPS needs at least
4 satellites to provide a precise location; the more satellites,
the more precise the localization. We introduced a conditional
measurement covariance matrixW ′: if the number of satellites
is less than 4, it is set to a big value; otherwise, it is negatively
correlated with the number of satellites within range around
W . Thus, when the satellite signals are blocked by clustered
buildings or dense forest, the navigation system can still work
based on VO.



State Prediction and Update: At each step, a prediction is
made based on the VO estimation from the last frame. The
evolution of the state therefore can be expressed as:

f(Xk,uk+1) =


xk+1 = xk + skt

x

zk+1 = zk + skt
z

θk+1 = φ

sk+1 = sv

Let uk+1 = [tx, tz, φ, s]T be the input derived from VO. tx, tz

are the position translations in x and z direction.respectively:
t = [tx, ty, tz]T . φ is derived from the rotation matrix R of
motion estimation, sv is the same as in Algorithm 1. Taking
the model noise into consideration, we have the prediction of
the state as:

Xk+1|k = f(Xk,uk+1) +α (4)

where, α ∼ N (0,Q) is model noise, and Q is covariance
matrix of estimation at frame instant k.

The state is then updated by measurement Z following
standard EKF update procedure:

Xk+1 =Xk+1|k +Kk+1(Zk+1 −Xk+1|k) (5)

where, Kk+1 is Kalman gain for each step.
After data fusion using EKF, accumulating errors from the

VO can be avoided. The rectified state parameters are also
ready to be used for landmark localization.

C. Landmark Localization

When a navigational instruction needs to be delivered, we
want the navigation system to give human-like guidance based
on landmarks, since drivers often have a poor intuitive under-
standing of numerical distances. For this reason, landmarks
must be located on the navigation map in order to be used as
references to the planning path.

For each frame, the landmark detection process can be ex-
ecuted in parallel with the VO. Most existing object-detection
methods present their results in bounding-boxes. For example,
Wiles et al. [5] detect the outline of selected landmarks such
as bus stops, corner shops, etc.

We extract SIFT feature points from each landmark’s
bounding-box and track them through subsequent frames.
Their position relative to the host vehicle is reconstructed using
the rectified camera motion from the EKF: the rotation and
translation used for triangulation are rectified using updated
yaw angle θ and scale s from the data fusion processing. The
average position of the feature points in each bounding box
represents the position of the landmark. Finally, by relating this
to the rectified host-vehicle position x, z, we can easily locate
the landmarks in the navigational map. The feature tracking
is done once a landmark is detected; the landmark location is
reconstructed and updated after each frame.

The navigation system can now use landmarks as references
to deliver human-like instructions: a process which will form
the next phase of this work.

IV. EXPERIMENT DESIGN AND RESULTS

Experiments were conducted using multi-sensor data col-
lected from real driving scenarios in a natural environment,
to verify the proposed approach. The data is collected from
a dash camera and a VBOX data logger installed inside the
host vehicle, and it was selected primarily from travel in built-
up areas and on city roads, since these scenarios generally
contain more meaningful landmarks. The experiments consist
of two parts: first, a 2km long trajectory segment in urban
area is analyzed along which different type of landmarks are
presented. Second, a collection of map included landmarks
(i.e. bus stops) at different locations is analyzed and compared
with Open Street Map labellings.

A. Data Acquisition and Correction

GPS and IMU data, including host-vehicle dynamics and
locations, were collected by a VBOX data logger at a fre-
quency of 10Hz. A monocular camera installed behind the
windshield recorded the front view video at 30fps, with a
resolution of 1280 × 720 pixels. To match the frequency
of GPS, the frames are extracted from the video at frame
rate of 10fps. All sensor data are time-synchronized before
the experiment. Since differential GPS is not enabled in this
dataset, we consider it as a reference, not as reliable ground
truth.

Fig. 3. Example frame with labelled landmark: a traffic sign

One challenge about this dataset is that the camera pose
respect to the host-vehicle is not strictly regulated. As shown in
Fig. 3, the camera orientation is not aligned with the vehicle’s
orientation, it means that the estimated camera motion from
VO does not represent the real motion state of the host-vehicle.
Fortunately, the GPS and navigation map indicate when the
host vehicle is moving straight forward on a planar road.
Comparing this trajectory segment with the estimated camera
movement path from VO, we can get an approximate yaw
angle of the camera pose with respect to the host-vehicle
coordinates. In addition, for this dataset, the roll angle of
camera relative to the host-vehicle can also be inferred by
extracting the edge of windshield. (Another more general
method that can be used to solve this problem involves
estimating the ground plane in camera coordinates). However,
the pitch angle of the camera is hard to estimate since the
car is vibrating all the time. In our data analysis, no solid



TABLE I
ESTIMATION ERROR OF WITH REFERENCE DATA ACCURACY

Table Position(m) Translation Yaw(◦/m)
VO Err. 1.58 3.85% 0.0029
EKF Err. 0.17 0.79% 0.0015
Ref. Acc. 3.00(m) / 0.01(◦)

evidence indicates a specific pitch angle, so we assume a
pitch angle of zero during the experiment. All pose angles are
considered with estimation errors. The VO estimation can then
be transformed to represent the vehicle’s movement. Despite
the challenge, an ability to cope with these variations rather
than assuming a fixed camera location in the vehicle has the
benefit that portable visual navigation devices could also be
used for this kind of natural navigation.

B. Experimental Results

First, a driving trajectory of 2km is selected to evaluate
both vision based and EKF fused odometry estimations. The
evaluation metrics are: the average differences of the estimated
position(m), translation error [13] and yaw angle error(◦/m).
The yaw angle error is a variant version of rotation error in
[13]. Table I demonstrates that the fused odometry estimation
is more precise than the tuned VO algorithm. Bottom row
of Table I lists the accuracy of the reference data which is
obtained from the device’s manual, that provides a relative
basis for the estimation accuracy.

Fig. 4. Plots of heading and translation of host vehicle at each frame

We pick a representative segmentation of 500 metres from
this trajectory for detailed analysis. It contains two round-
abouts; with a brief pause before entering the second one.
Fig. 4 presents the host-vehicle’s estimated heading direction
and translation in x-axis and z-axis along frame stamps.
The three vertical lines indicates when the landmarks are
detected and start being tracked. The half-transparent pink
blocks indicates the duration of two roundabouts. We compare
the estimations from regular VO, tuned VO, EKF-based data
fusion, and GPS data are also listed as references. The top
sub-figure shows the heading plots from different algorithms,

and they tend to have very small deviation, but after every
roundabout, the deviation becomes more visible.

The middle and the bottom sub-figures illustrate the transla-
tion deviation from the GPS reference. Mostly, the estimated
translation is relatively close to the reference. However, there
is a major deviation when entering the first roundabout.
Compared to regular VO, the tuned VO effectively reduced
the duration of deviation, but cannot remove it completely.
The reason is that a moving bus occupies the major view of
the dash camera during that period, leading to unreliable ego-
motion estimation.

Fig. 5. Example of landmark localization result

Fig. 5 plots the estimated trajectories from tuned VO and
EKF-based data fusion, GPS trajectory is set as reference. As
expected from previous analyses, a major trajectory deviation
appears during the first roundabout using tuned VO based
estimation, and minor deviations accumulate along the driving
path. Data fusion using EKF, however, effectively reduced the
estimation deviation from the reference trajectory.

Knowing where the host-vehicle is located and how it
moves, we can reconstruct landmarks accordingly. Three
example landmarks are selected manually along the trajec-
tory in this segment, while the host vehicle is moving at
different speeds and in different orientations: a traffic sign
when entering a roundabout, a direction sign, and a bus stop.
Bounding boxes on the landmarks were labelled manually in
the frame when the host vehicle is approaching from 50m
away. Detected SIFT features from these bounding boxes
are then tracked and triangulated during the next 2 seconds
(20 frames). Means of the estimated landmark locations are
marked on the map in Fig. 5. However, no ground truth is
available, so we used Google Street View to check whether
the landmarks can be observed at each estimated location.
Naturally, there are discrepancies because images in Google
Street View are captured at discrete intervals. Still all of
the landmarks are successfully found near their estimated
location. In additional, we have localized 5 traffic lights from
other trajectory segments. Despite the lack of ground truth,
the standard deviation of the landmarks’ location estimation
is quite small, as indicated in Table II. It illustrates that
our method can provide consistent and stable estimation of
landmarks’ location with only brief visibility.



TABLE II
STANDARD DEVIATION OF ESTIMATED LANDMARK LOCATIONS

Landmark Roundabout Direction sign Bus stop 5 Traffic lights
σx(m) 2.63 0.93 0.81 7.76
σz(m) 1.95 0.71 1.02 2.94

For the second part of experiment, we tried to localize
POI landmarks found in Open Street Map (OSM) using our
algorithm and compare the result with their location on the
map. During the data collection, we noticed that not all inter-
esting landmarks are available in OSM, for example, traffic
lights in branch roads. In addition, the landmarks labelled
as POIs are not always visible from the dash camera. In the
end, we selected five bus stops for comparison. The result is
shown in Table III. As can be seen, the standard deviations
for VO-based localizations from different frames are mostly
about 5m, except for bus stop number 3 (BS3). The reason
for such a big deviation here could be a combination of the
inaccurate ego-motion estimation and the GPS data, since the
GPS localization in this segment is very noisy. Situation like
this is difficult to avoid, we are hoping to improve the result
by adding filters for the landmarks as well in the future.

By contrast, the distance between our VO-localized land-
marks and their positions in OSM have low estimation devi-
ation. Bus Stop number 1 (BS1) shows the biggest difference
from its OSM location. We cross-checked the position of
this landmark against Google Maps, and it appears that the
accuracy of some of the POI map locations in OSM is
decidedly weak. A robust general evaluation method of the
localization accuracy therefore remains to be found.

TABLE III
LANDMARKS LOCALIZATION AGAINST OSM

Landmark BS1 BS2 BS3 BS4 BS5
σx(m) 5.27 1.02 23.81 1.75 0.87
σz(m) 0.57 1.43 13.74 1.72 1.21

dOSM (m) 19.22 10.24 16.11 4.27 8.93

Despite this, the early experimental results from our method
suggest that it provides a promising prototype algorithm for
locating landmarks for human-like navigation guidance.

Our local processing platform is a standard PC running Mac
OS on a 2.66GHz Intel CPU. The computation environment is
MATLAB R2016b. The average run-time for EKF-based host-
vehicle localization and mapping is around 544ms per frame.
For landmark localization it costs 9.5ms per frame. Since the
experiments were done purely for prototype development, it
is likely that the algorithm would be able to run in real-time
after optimization.

V. CONCLUSION AND FUTURE WORK

We have presented a first step towards the development of a
natural, human-like navigation system using Computer Vision
techniques. We have demonstrated that the fusion of VO with
other sensor data effectively assists in converting a visible

landmark in the driver’s view to a position on a navigational
map. However, a full qualitative evaluation remains difficult
in the absence of reliable ground truth data.

The main contributions of this paper are:
• A tuned VO algorithm which is suitable for driving

navigation
• A landmark-localization-orientated EKF filter for multi-

sensor data fusion
• Demonstrating the feasibility of landmark-based naviga-

tion.
Our next step will be to combine our current work with

a routing algorithm to build a complete human-like guidance
system. In the short term, we can approach a pure vision-
based navigation system by using landmarks for partial bun-
dle adjustment to improve the accuracy of Monocular VO.
Additionally, we are aiming to build a more reliable landmark
dataset from POIs stored in Open Street Map, which will form
a reference for detection training and localization evaluation.
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